Q Criterion

2018-09-14

  • 1 Q判据
    • 1.1 计算公式
    • 1.2 物理含义
    • 1.3 相应脚本
      • 1.3.1 Tecplot使用的MCR文件
      • 1.3.2 Fluent使用自定义场函数

1 Q判据

1.1 计算公式

Vortices of an incompressible flow are identified as connected fluid regions with a positive second invariant of the velocity-gradient tensor \(\Delta u\), \(\Delta u = S + \Omega\), \(S\) is the strain-rate tensor, \(\Omega\) is the vorticity tensor. Formula is as follows,1

\[ \begin{aligned} Q &= \frac{1}{2} ( u^{2}_{i,i} - u_{i,j} u_{j,i} ) \\ &= - \frac{1}{2} u_{i,j} u_{j,i} \\ &= \frac{1}{2} ( \Vert \Omega \Vert^{2} - \Vert S \Vert^{2} ) \\ \end{aligned} \]

1.2 物理含义

  • 待补充

1.3 相应脚本

1.3.1 Tecplot使用的MCR文件

  • Qcriterion.mcr
    • Using Tecplot’s Specify Equations tool this file calculates the components of the symmetric and antisymmetric parts of the velocity gradient tensor. Using these new tensors the lambda-2 and Q-criterion (Q criterion) is determined.
    • 实际使用中,载入该宏文件后,需要指定X,Y,Z方向的速度在Data Set Info中的序号。
    • 实际运行效率很低,对于三维算例运行时间较长,约半小时。

1.3.2 Fluent使用自定义场函数

  • 使用custom field function,按照Q判据定义,计算出新的变量作为Q-Criterion。使用的计算式如下,

      Q-Criterion = 0.5 * ( {Vorticity Magnitude}^2 - {Strain Rate}^2 )
    • 其中Vorticity Magnitude位于Velocity分类下,Strain Rate位于Derivative分类下。2

  1. Kolář V. Brief notes on vortex identification[C]//Proceedings of the 8th WSEAS International Conference on Fluid Mechanics and 8th WSEAS International Conf. on Heat and Mass Transfer. Stevens Port, WI: World Scientific and Engineering Academy and Society (WSEAS), 2011: 23-28.↩︎

  2. 涡量与应变率的定义式见Vorticity_and_StrainRate.pdf↩︎

.
Created on 2018-09-14 with pandoc